Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women.

نویسندگان

  • P A Jaques
  • C S Kim
چکیده

Ultrafine particles (< 0.10 microm in diameter) are present in great number in polluted urban air, thus posing a potential health risk. In this study, the total deposition fraction (TDF) of ultrafine aerosols with a narrow size distribution (number median diameter NMD = 0.04-0.1 microm and geometric standard deviation sigma(g) = approximately 1.3) was measured in a group of young healthy adults (11 men and 11 women). TDF was obtained with 6 different breathing patterns: tidal volume (V(t)) of 500 ml at respiratory flow rates (Q) of 150 and 250 ml/s; V(t) = 750 ml at Q of 250 and 375 ml/s; and V(t) = 1 L at Q of 250 and 500 ml/s. Aerosols were monitored continuously by a modified condensation nuclei counter while subjects were inhaling them with prescribed breathing patterns. For a given breathing pattern, TDF increased as particle size decreased, regardless of the breathing pattern used. For example, with V(t) = 500 ml and Q = 250 ml/s, TDF (mean +/- SD) was 0.26 +/-.04, 0.30 +/-. 05, 0.35 +/-.05, and 0.44 +/-.07 for NMD = 0.10, 0.08, 0.06, and 0. 04 microm, respectively. For a given NMD, TDF increased with an increase in V(t) and a decrease in Q. TDF was greater for women than men at NMD = 0.04 microm within all breathing patterns used (p <.05), but the difference was smaller or negligible for larger sized particles. The results suggest that the TDF of ultrafine particles increases with a decrease of particle size and with breathing patterns of longer respiratory time, a pattern that is consistent with diffusion deposition of ultrafine particles. The results also suggest that there is a differential lung dose of ultrafine particles and thus there may be a differential health risk for men versus women.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regional deposition of inhaled particles in human lungs: comparison between men and women.

We measured detailed regional deposition patterns of inhaled particles in healthy adult male (n = 11; 25 +/- 4 yr of age) and female (n = 11; 25 +/- 3 yr of age) subjects by means of a serial bolus aerosol delivery technique for monodisperse fine [particle diameter (Dp) = 1 micron] and coarse aerosols (Dp = 3 and 5 micron). The bolus aerosol (40 ml half-width) was delivered to a specific volume...

متن کامل

Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease.

To evaluate the effects of lung disease on deposition of inhaled ultrafine particles (less than 0.1 micron diameter), we measured total respiratory tract deposition of nonhygroscopic particles of 0.02 to 0.24 micron in five subjects with obstructive lung disease and three subjects with restrictive lung disease and compared it with that in ten normal subjects. Deposition was measured as concentr...

متن کامل

Deposition of ultrafine (nano) particles in the human lung.

Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing...

متن کامل

Correlation between particle size, in vivo particle persistence, and lung injury.

Dosimetry parameters such as deposition, clearance, retention, and translocation and dissolution of inhaled particles in and to different lung compartments may be important for the persistence of particles in the lung and may correlate with adverse pulmonary effects. We investigated such correlations using a model involving TiO2 particles of two particle sizes (20 nm diameter, ultrafine; 250 nm...

متن کامل

Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs.

Recently it was speculated that ultrafine particles (UFP) may translocate from deposition sites in the lungs to systemic circulation and whether long-term clearance differs between ultrafine and micrometer-sized particles. We have studied lung retention and clearance kinetics in 12 healthy male adult WKY rats up to 6 mo after an inhalation of (192)Ir-radiolabeled, insoluble, ultrafine 15- to 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inhalation toxicology

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2000